一、问题分析
看一下力扣第 416 题「分割等和子集」:
输入一个只包含正整数的非空数组 nums
,请你写一个算法,判断这个数组是否可以被分割成两个子集,使得两个子集的元素和相等。
算法的函数签名如下:
比如说输入 nums = [1,5,11,5]
,算法返回 true,因为 nums
可以分割成 [1,5,5]
和 [11]
这两个子集。
如果说输入 nums = [1,3,2,5]
,算法返回 false,因为 nums
无论如何都不能分割成两个和相等的子集。
对于这个问题,看起来和背包没有任何关系,为什么说它是背包问题呢?
首先回忆一下背包问题大致的描述是什么:
给你一个可装载重量为 W
的背包和 N
个物品,每个物品有重量和价值两个属性。其中第 i
个物品的重量为 wt[i]
,价值为 val[i]
,现在让你用这个背包装物品,最多能装的价值是多少?
那么对于这个问题,我们可以先对集合求和,得出 sum
,把问题转化为背包问题:
给一个可装载重量为 sum / 2
的背包和 N
个物品,每个物品的重量为 nums[i]
。现在让你装物品,是否存在一种装法,能够恰好将背包装满?
你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。
二、解法分析
第一步要明确两点,「状态」和「选择」。
这个前文 1. 0-1背包问题 已经详细解释过了,状态就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」。
第二步要明确 dp
数组的定义。
按照背包问题的套路,可以给出如下定义:
dp[i][j] = x
表示,对于前 i
个物品(i
从 1 开始计数),当前背包的容量为 j
时,若 x
为 true
,则说明可以恰好将背包装满,若 x
为 false
,则说明不能恰好将背包装满。
比如说,如果 dp[4][9] = true
,其含义为:对于容量为 9 的背包,若只是在前 4 个物品中进行选择,可以有一种方法把背包恰好装满。
或者说对于本题,含义是对于给定的集合中,若只在前 4 个数字中进行选择,存在一个子集的和可以恰好凑出 9。
根据这个定义,我们想求的最终答案就是 dp[N][sum/2]
,base case 就是 dp[..][0] = true
和 dp[0][..] = false
,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。
第三步,根据「选择」,思考状态转移的逻辑。
回想刚才的 dp
数组含义,可以根据「选择」对 dp[i][j]
得到以下状态转移:
如果不把 nums[i]
算入子集,或者说你不把这第 i
个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态 dp[i-1][j]
,继承之前的结果。
如果把 nums[i]
算入子集,或者说你把这第 i
个物品装入了背包,那么是否能够恰好装满背包,取决于状态 dp[i-1][j-nums[i-1]]
。
Info
由于
dp
数组定义中的i
是从 1 开始计数,而数组索引是从 0 开始的,所以第i
个物品的重量应该是nums[i-1]
,这一点不要搞混。
dp[i - 1][j-nums[i-1]]
也很好理解:你如果装了第 i
个物品,就要看背包的剩余重量 j - nums[i-1]
限制下是否能够被恰好装满。
换句话说,如果 j - nums[i-1]
的重量可以被恰好装满,那么只要把第 i
个物品装进去,也可恰好装满 j
的重量;否则的话,重量 j
肯定是装不满的。
最后一步,把伪码翻译成代码,处理一些边界情况。
以下是我的 Java 代码,完全翻译了之前的思路,并处理了一些边界情况:
三、进一步优化
再进一步,是否可以优化这个代码呢?注意到 dp[i][j]
都是通过上一行 dp[i-1][..]
转移过来的,之前的数据都不会再使用了。
所以,我们可以参照前文 对动态规划进行降维打击,将二维 dp
数组压缩为一维,节约空间复杂度:
其实这段代码和之前的解法思路完全相同,只在一行 dp
数组上操作,i
每进行一轮迭代,dp[j]
其实就相当于 dp[i-1][j]
,所以只需要一维数组就够用了。
唯一需要注意的是 j
应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果。
至此,子集切割的问题就完全解决了,时间复杂度 O(n\*sum)
,空间复杂度 O(sum)
。