解决这个问题还可以用动态规划技巧解决,但是 dp 数组的定义比较特殊。按照我们常规的动态规划思路,一般是这样定义 dp 数组:

nums[0..i] 中的「最大的子数组和」为 dp[i]

Warning

连续子数组: 比如[1,2,3], 连续子数组有[1,2],[2,3],[1,2,3], 其中[1,3]不是连续的
然后类比:[1,3,5]这种非相邻数组,[1,3]、[3,5]、[1,3,5]是连续的,而[1,5]不是 如果这样定义的话,整个 nums 数组的「最大子数组和」就是 dp[n-1]。如何找状态转移方程呢?按照数学归纳法,假设我们知道了 dp[i-1],如何推导出 dp[i] 呢?

如下图,按照我们刚才对 dp 数组的定义,dp[i] = 5 ,也就是等于 nums[0..i] 中的最大子数组和:

image.png

那么在上图这种情况中,利用数学归纳法,你能用 dp[i] 推出 dp[i+1] 吗?

实际上是不行的,因为子数组一定是连续的,按照我们当前 dp 数组定义,并不能保证 nums[0..i] 中的最大子数组与 nums[i+1] 是相邻的,也就没办法从 dp[i] 推导出 dp[i+1]

比如上图 dp[i]不包括-6,自然无法推导出 dp[i+1], 如何 dp[i+1]需要这个-6 呢?

所以说我们这样定义 dp 数组是不正确的,无法得到合适的状态转移方程。对于这类子数组问题,我们就要重新定义 dp 数组的含义:

以 nums[i] 为结尾的「最大子数组和」为 dp[i]

Tip

nums[i-1]必定与 dp[i]相邻,然后我们只要判断 dp[i-1]+num[i-1]和 num[i-1]大小即可,谁大就用谁,dp[i-1]+num [i-1](带上了 num [i-1],就必定与 nums[i]相邻,若 num[i-1],说明前面的加起来还没有 num[i-1]大,舍弃即可,从 num[i-1]开始重新寻找) 大,

这种定义之下,想得到整个 nums 数组的「最大子数组和」,不能直接返回 dp[n-1],而需要遍历整个 dp 数组:

int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
    res = Math.max(res, dp[i]);
}
return res;

依然使用数学归纳法来找状态转移关系:假设我们已经算出了 dp[i-1],如何推导出 dp[i] 呢?

可以做到,dp[i] 有两种「选择」,要么与前面的相邻子数组连接,形成一个和更大的子数组;要么不与前面的子数组连接,自成一派,自己作为一个子数组

如何选择?既然要求「最大子数组和」,当然选择结果更大的那个啦:

// 要么自成一派,要么和前面的子数组合并
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);

综上,我们已经写出了状态转移方程,就可以直接写出解法了:

int maxSubArray(int[] nums) {
    int n = nums.length;
    if (n == 0) return 0;
    // 定义:dp[i] 记录以 nums[i] 为结尾的「最大子数组和」
    int[] dp = new int[n];
    // base case
    // 第一个元素前面没有子数组
    dp[0] = nums[0];
    // 状态转移方程
    for (int i = 1; i < n; i++) {
        dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
    }
    // 得到 nums 的最大子数组
    int res = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}

动态规划设计:最大子数组 | labuladong 的算法笔记

以上解法时间复杂度是 O(N),空间复杂度也是 O(N),较暴力解法已经很优秀了,不过注意到 dp[i] 仅仅和 dp[i-1] 的状态有关,那么我们可以施展前文 动态规划的降维打击:空间压缩技巧 讲的技巧进行进一步优化,将空间复杂度降低:

int maxSubArray(int[] nums) {
    int n = nums.length;
    if (n == 0) return 0;
    // base case
    int dp_0 = nums[0];
    int dp_1 = 0, res = dp_0;
 
    for (int i = 1; i < n; i++) {
        // dp[i] = max(nums[i], nums[i] + dp[i-1])
        dp_1 = Math.max(nums[i], nums[i] + dp_0);
        dp_0 = dp_1;
        // 顺便计算最大的结果
        res = Math.max(res, dp_1);
    }
    
    return res;
}