终于到了最后一种类型了:输入数组无重复元素,但每个元素可以被无限次使用。

直接看力扣第 39 题「 组合总和 」:

给你一个无重复元素的整数数组 candidates 和一个目标和 target,找出 candidates 中可以使数字和为目标数 target 的所有组合。candidates 中的每个数字可以无限制重复被选取。

函数签名如下:

List<List<Integer>> combinationSum(int[] candidates, int target)

比如输入 candidates = [1,2,3], target = 3,算法应该返回:

[ [1,1,1],[1,2],[3] ]

这道题说是组合问题,实际上也是子集问题:candidates 的哪些子集的和为 target

想解决这种类型的问题,也得回到回溯树上,我们不妨先思考思考,标准的子集/组合问题是如何保证不重复使用元素的

答案在于 backtrack 递归时输入的参数 start

// 无重组合的回溯算法框架
void backtrack(int[] nums, int start) {
    for (int i = start; i < nums.length; i++) {
        // ...
        // 递归遍历下一层回溯树,注意参数
        backtrack(nums, i + 1);
        // ...
    }
}
 

这个 i 从 start 开始,那么下一层回溯树就是从 start + 1 开始,从而保证 nums[start] 这个元素不会被重复使用:

image.png

那么反过来,如果我想让每个元素被重复使用,我只要把 i + 1 改成 i 即可:

// 可重组合的回溯算法框架
void backtrack(int[] nums, int start) {
    for (int i = start; i < nums.length; i++) {
        // ...
        // 递归遍历下一层回溯树,注意参数
        backtrack(nums, i);
        // ...
    }
}

这相当于给之前的回溯树添加了一条树枝,在遍历这棵树的过程中,一个元素可以被无限次使用:

image.png

当然,这样这棵回溯树会永远生长下去,所以我们的递归函数需要设置合适的 base case 以结束算法,即路径和大于 target 时就没必要再遍历下去了。

这道题的解法代码如下:

class Solution {
 
    List<List<Integer>> res = new LinkedList<>();
    // 记录回溯的路径
    LinkedList<Integer> track = new LinkedList<>();
    // 记录 track 中的路径和
    int trackSum = 0;
 
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        if (candidates.length == 0) {
            return res;
        }
        backtrack(candidates, 0, target);
        return res;
    }
 
    // 回溯算法主函数
    void backtrack(int[] nums, int start, int target) {
        // base case,找到目标和,记录结果
        if (trackSum == target) {
            res.add(new LinkedList<>(track));
            return;
        }
        // base case,超过目标和,停止向下遍历
        if (trackSum > target) {
            return;
        }
 
        // 回溯算法标准框架
        for (int i = start; i < nums.length; i++) {
            // 选择 nums[i]
            trackSum += nums[i];
            track.add(nums[i]);
            // 递归遍历下一层回溯树
            // 同一元素可重复使用,注意参数
            backtrack(nums, i, target);
            // 撤销选择 nums[i]
            trackSum -= nums[i];
            track.removeLast();
        }
    }
}

回溯算法秒杀所有排列-组合-子集问题 | labuladong 的算法笔记