读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:
LeetCode | 力扣 | 难度 |
---|---|---|
46. Permutations | 46. 全排列 | 🟠 |
51. N-Queens | 51. N 皇后 | 🔴 |
52. N-Queens II | 52. N皇后 II | 🔴 |
- | 剑指 Offer II 083. 没有重复元素集合的全排列 | 🟠 |
本文解决几个问题:
回溯算法是什么?解决回溯算法相关的问题有什么技巧?如何学习回溯算法?回溯算法代码是否有规律可循?
其实回溯算法和我们常说的 DFS 算法非常类似,本质上就是一种暴力穷举算法。回溯算法和 DFS 算法的细微差别是:回溯算法是在遍历「树枝」,DFS 算法是在遍历「节点」,本文就是简单提一下,你有个印象就行了。等你看了 [手把手刷二叉树(纲领篇)] 和 [图论算法基础] 之后就能深刻理解这句话的含义了。
抽象地说,解决一个回溯问题,实际上就是遍历一棵决策树的过程,树的每个叶子节点存放着一个合法答案。你把整棵树遍历一遍,把叶子节点上的答案都收集起来,就能得到所有的合法答案。
站在回溯树的一个节点上,你只需要思考 3 个问题:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。
如果你不理解这三个词语的解释,没关系,我们后面会用「全排列」和「N 皇后问题」这两个经典的回溯算法问题来帮你理解这些词语是什么意思,现在你先留着印象。
代码方面,回溯算法的框架:
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。
什么叫做选择和撤销选择呢,这个框架的底层原理是什么呢?下面我们就通过「全排列」这个问题来解开之前的疑惑,详细探究一下其中的奥妙!