LinkedList 简介
LinkedList
是一个基于双向链表实现的集合类,经常被拿来和 ArrayList
做比较。关于 LinkedList
和ArrayList
的详细对比,我们 Java集合常见面试题总结(上)有详细介绍到。
不过,我们在项目中一般是不会使用到 LinkedList
的,需要用到 LinkedList
的场景几乎都可以使用 ArrayList
来代替,并且,性能通常会更好!就连 LinkedList
的作者约书亚 · 布洛克(Josh Bloch)自己都说从来不会使用 LinkedList
。
另外,不要下意识地认为 LinkedList
作为链表就最适合元素增删的场景。我在上面也说了,LinkedList
仅仅在头尾插入或者删除元素的时候时间复杂度近似 O(1),其他情况增删元素的平均时间复杂度都是 O(n) 。
LinkedList 插入和删除元素的时间复杂度?
- 头部插入/删除:只需要修改头结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。
- 尾部插入/删除:只需要修改尾结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。
- 指定位置插入/删除:需要先移动到指定位置,再修改指定节点的指针完成插入/删除,因此需要移动平均 n/2 个元素,时间复杂度为 O(n)。
LinkedList 为什么不能实现 RandomAccess 接口?
RandomAccess
是一个标记接口,用来表明实现该接口的类支持随机访问(即可以通过索引快速访问元素)。由于 LinkedList
底层数据结构是链表,内存地址不连续,只能通过指针来定位,不支持随机快速访问,所以不能实现 RandomAccess
接口。
LinkedList 源码分析
这里以 JDK1.8 为例,分析一下 LinkedList
的底层核心源码。
LinkedList
的类定义如下:
LinkedList
继承了 AbstractSequentialList
,而 AbstractSequentialList
又继承于 AbstractList
。
阅读过 ArrayList
的源码我们就知道,ArrayList
同样继承了 AbstractList
, 所以 LinkedList
会有大部分方法和 ArrayList
相似。
LinkedList
实现了以下接口:
List
: 表明它是一个列表,支持添加、删除、查找等操作,并且可以通过下标进行访问。
Deque
:继承自 Queue
接口,具有双端队列的特性,支持从两端插入和删除元素,方便实现栈和队列等数据结构。需要注意,Deque
的发音为 “deck” [dɛk],这个大部分人都会读错。
Cloneable
:表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。
Serializable
: 表明它可以进行序列化操作,也就是可以将对象转换为字节流进行持久化存储或网络传输,非常方便。
LinkedList
中的元素是通过 Node
定义的:
初始化
LinkedList
中有一个无参构造函数和一个有参构造函数。
插入元素
LinkedList
除了实现了 List
接口相关方法,还实现了 Deque
接口的很多方法,所以我们有很多种方式插入元素。
我们这里以 List
接口中相关的插入方法为例进行源码讲解,对应的是add()
方法。
add()
方法有两个版本:
add(E e)
:用于在 LinkedList
的尾部插入元素,即将新元素作为链表的最后一个元素,时间复杂度为 O(1)。
add(int index, E element)
:用于在指定位置插入元素。这种插入方式需要先移动到指定位置,再修改指定节点的指针完成插入/删除,因此需要移动平均 n/2 个元素,时间复杂度为 O(n)。
获取元素
LinkedList
获取元素相关的方法一共有 3 个:
getFirst()
:获取链表的第一个元素。
getLast()
:获取链表的最后一个元素。
get(int index)
:获取链表指定位置的元素。
这里的核心在于 node(int index)
这个方法:
get(int index)
或 remove(int index)
等方法内部都调用了该方法来获取对应的节点。
从这个方法的源码可以看出,该方法通过比较索引值与链表 size 的一半大小来确定从链表头还是尾开始遍历。如果索引值小于 size 的一半,就从链表头开始遍历,反之从链表尾开始遍历。这样可以在较短的时间内找到目标节点,充分利用了双向链表的特性来提高效率。
删除元素
LinkedList
删除元素相关的方法一共有 5 个:
removeFirst()
:删除并返回链表的第一个元素。
removeLast()
:删除并返回链表的最后一个元素。
remove(E e)
:删除链表中首次出现的指定元素,如果不存在该元素则返回 false。
remove(int index)
:删除指定索引处的元素,并返回该元素的值。
void clear()
:移除此链表中的所有元素。
这里的核心在于 unlink(Node<E> x)
这个方法:
unlink()
方法的逻辑如下:
- 首先获取待删除节点 x 的前驱和后继节点;
- 判断待删除节点是否为头节点或尾节点:
- 如果 x 是头节点,则将 first 指向 x 的后继节点 next
- 如果 x 是尾节点,则将 last 指向 x 的前驱节点 prev
- 如果 x 不是头节点也不是尾节点,执行下一步操作
- 将待删除节点 x 的前驱的后继指向待删除节点的后继 next,断开 x 和 x.prev 之间的链接;
- 将待删除节点 x 的后继的前驱指向待删除节点的前驱 prev,断开 x 和 x.next 之间的链接;
- 将待删除节点 x 的元素置空,修改链表长度。
可以参考下图理解(图源:LinkedList 源码分析(JDK 1.8)):
遍历链表
推荐使用for-each
循环来遍历 LinkedList
中的元素, for-each
循环最终会转换成迭代器形式。
LinkedList
的遍历的核心就是它的迭代器的实现。
下面我们对迭代器 ListItr
中的核心方法进行详细介绍。
我们先来看下从头到尾方向的迭代:
再来看一下从尾到头方向的迭代:
如果需要删除或插入元素,也可以使用迭代器进行操作。
迭代器对应的移除元素的方法如下:
LinkedList 常用方法测试
代码:
输出:
索引为 2 的元素:banana
链表内容:[apple, orange, banana, grape]
链表内容:[orange, banana, grape]
链表内容:[orange, grape]
链表长度:2
清空后的链表:[]