来回顾一下排列/组合/子集问题的三种形式在代码上的区别。
由于子集问题和组合问题本质上是一样的,无非就是 base case 有一些区别,所以把这两个问题放在一起看。
形式一、元素无重不可复选,即 nums
中的元素都是唯一的,每个元素最多只能被使用一次,backtrack
核心代码如下:
/* 组合/子集问题回溯算法框架 */
void backtrack(int[] nums, int start) {
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
// 注意参数
backtrack(nums, i + 1);
// 撤销选择
track.removeLast();
}
}
/* 排列问题回溯算法框架 */
void backtrack(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 剪枝逻辑
if (used[i]) {
continue;
}
// 做选择
used[i] = true;
track.addLast(nums[i]);
backtrack(nums);
// 撤销选择
track.removeLast();
used[i] = false;
}
}
形式二、元素可重不可复选,即 nums
中的元素可以存在重复,每个元素最多只能被使用一次,其关键在于排序和剪枝,backtrack
核心代码如下:
Arrays.sort(nums);
/* 组合/子集问题回溯算法框架 */
void backtrack(int[] nums, int start) {
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 剪枝逻辑,跳过值相同的相邻树枝
if (i > start && nums[i] == nums[i - 1]) {
continue;
}
// 做选择
track.addLast(nums[i]);
// 注意参数
backtrack(nums, i + 1);
// 撤销选择
track.removeLast();
}
}
Arrays.sort(nums);
/* 排列问题回溯算法框架 */
void backtrack(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 剪枝逻辑
if (used[i]) {
continue;
}
// 剪枝逻辑,固定相同的元素在排列中的相对位置
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
continue;
}
// 做选择
used[i] = true;
track.addLast(nums[i]);
backtrack(nums);
// 撤销选择
track.removeLast();
used[i] = false;
}
}
形式三、元素无重可复选,即 nums
中的元素都是唯一的,每个元素可以被使用若干次,只要删掉去重逻辑即可,backtrack
核心代码如下:
/* 组合/子集问题回溯算法框架 */
void backtrack(int[] nums, int start) {
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
// 注意参数
backtrack(nums, i);
// 撤销选择
track.removeLast();
}
}
/* 排列问题回溯算法框架 */
void backtrack(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
backtrack(nums);
// 撤销选择
track.removeLast();
}
}
只要从树的角度思考,这些问题看似复杂多变,实则改改 base case 就能解决