排列问题在前文 [回溯算法核心框架]讲过,这里就简单过一下。

力扣第 46 题「全排列」就是标准的排列问题:

给定一个不含重复数字的数组 nums,返回其所有可能的全排列

函数签名如下:

List<List<Integer>> permute(int[] nums)

比如输入 nums = [1,2,3],函数的返回值应该是:

[
    [1,2,3],[1,3,2],
    [2,1,3],[2,3,1],
    [3,1,2],[3,2,1]
]

刚才讲的组合/子集问题使用 start 变量保证元素 nums[start] 之后只会出现 nums[start+1..] 中的元素,通过固定元素的相对位置保证不出现重复的子集。

但排列问题本身就是让你穷举元素的位置,nums[i] 之后也可以出现 nums[i] 左边的元素,所以之前的那一套玩不转了,需要额外使用 used 数组来标记哪些元素还可以被选择

标准全排列可以抽象成如下这棵多叉树:

image.png

我们用 used 数组标记已经在路径上的元素避免重复选择,然后收集所有叶子节点上的值,就是所有全排列的结果:

class Solution {
 
    List<List<Integer>> res = new LinkedList<>();
    // 记录回溯算法的递归路径
    LinkedList<Integer> track = new LinkedList<>();
    // track 中的元素会被标记为 true
    boolean[] used;
 
    /* 主函数,输入一组不重复的数字,返回它们的全排列 */
    public List<List<Integer>> permute(int[] nums) {
        used = new boolean[nums.length];
        backtrack(nums);
        return res;
    }
 
    // 回溯算法核心函数
    void backtrack(int[] nums) {
        // base case,到达叶子节点
        if (track.size() == nums.length) {
            // 收集叶子节点上的值
            res.add(new LinkedList(track));
            return;
        }
 
        // 回溯算法标准框架
        for (int i = 0; i < nums.length; i++) {
            // 已经存在 track 中的元素,不能重复选择
            if (used[i]) {
                continue;
            }
            // 做选择
            used[i] = true;
            track.addLast(nums[i]);
            // 进入下一层回溯树
            backtrack(nums);
            // 取消选择
            track.removeLast();
            used[i] = false;
        }
    }
}
 

回溯算法秒杀所有排列-组合-子集问题 | labuladong 的算法笔记

这样,全排列问题就解决了。

但如果题目不让你算全排列,而是让你算元素个数为 k 的排列,怎么算?

也很简单,改下 backtrack 函数的 base case,仅收集第 k 层的节点值即可:

// 回溯算法核心函数
void backtrack(int[] nums, int k) {
    // base case,到达第 k 层,收集节点的值
    if (track.size() == k) {
        // 第 k 层节点的值就是大小为 k 的排列
        res.add(new LinkedList(track));
        return;
    }
 
    // 回溯算法标准框架
    for (int i = 0; i < nums.length; i++) {
        // ...
        backtrack(nums, k);
        // ...
    }
}