先来看看力扣第 76 题「最小覆盖子串」难度 Hard:
就是说要在 S
(source) 中找到包含 T
(target) 中全部字母的一个子串,且这个子串一定是所有可能子串中最短的。
如果我们使用暴力解法,代码大概是这样的:
for (int i = 0; i < s.size(); i++)
for (int j = i + 1; j < s.size(); j++)
if s[i:j] 包含 t 的所有字母:
更新答案
思路很直接,但是显然,这个算法的复杂度肯定大于 O(N^2) 了,不好。
滑动窗口算法的思路是这样:
1、我们在字符串 S
中使用双指针中的左右指针技巧,初始化 left = right = 0
,把索引左闭右开区间 [left, right)
称为一个「窗口」。
Tip
理论上你可以设计两端都开或者两端都闭的区间,但设计为左闭右开区间是最方便处理的。因为这样初始化
left = right = 0
时区间[0, 0)
中没有元素,但只要让right
向右移动(扩大)一位,区间[0, 1)
就包含一个元素0
了。如果你设置为两端都开的区间,那么让right
向右移动一位后开区间(0, 1)
仍然没有元素;如果你设置为两端都闭的区间,那么初始区间[0, 0]
就包含了一个元素。这两种情况都会给边界处理带来不必要的麻烦。
2、我们先不断地增加 right
指针扩大窗口 [left, right)
,直到窗口中的字符串符合要求(包含了 T
中的所有字符)。
3、此时,我们停止增加 right
,转而不断增加 left
指针缩小窗口 [left, right)
,直到窗口中的字符串不再符合要求(不包含 T
中的所有字符了)。同时,每次增加 left
,我们都要更新一轮结果。
4、重复第 2 和第 3 步,直到 right
到达字符串 S
的尽头。
这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。
下面画图理解一下,needs
和 window
相当于计数器,分别记录 T
中字符出现次数和「窗口」中的相应字符的出现次数。
初始状态:
增加 right
,直到窗口 [left, right)
包含了 T
中所有字符:
现在开始增加 left
,缩小窗口 [left, right)
:
直到窗口中的字符串不再符合要求,left
不再继续移动:
之后重复上述过程,先移动 right
,再移动 left
…… 直到 right
指针到达字符串 S
的末端,算法结束。
如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用:
首先,初始化 window
和 need
两个哈希表,记录窗口中的字符和需要凑齐的字符:
unordered_map<char, int> need, window;
For (char c : t) need[c]++;
然后,使用 left
和 right
变量初始化窗口的两端,不要忘了,区间 [left, right)
是左闭右开的,所以初始情况下窗口没有包含任何元素:
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// 开始滑动
}
其中 valid
变量表示窗口中满足 need
条件的字符个数,如果 valid
和 need.size
的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T
。
现在开始套模板,只需要思考以下几个问题:
1、什么时候应该移动 right
扩大窗口?窗口加入字符时,应该更新哪些数据?
2、什么时候窗口应该暂停扩大,开始移动 left
缩小窗口?从窗口移出字符时,应该更新哪些数据?
3、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?
如果一个字符进入窗口,应该增加 window
计数器;如果一个字符将移出窗口的时候,应该减少 window
计数器;当 valid
满足 need
时应该收缩窗口;应该在收缩窗口的时候更新最终结果。
下面是完整代码:
// 注意:java 代码由 chatGPT🤖 根据我的 cpp 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码不保证正确性,仅供参考。如有疑惑,可以参照我写的 cpp 代码对比查看。
/**
* 求字符串 s 中包含字符串 t 所有字符的最小子串
* @param s 源字符串
* @param t 给定字符串
* @return 满足条件的最小子串
*/
public String minWindow(String s, String t) {
// 用于记录需要的字符和窗口中的字符及其出现的次数
Map<Character, Integer> need = new HashMap<>();
Map<Character, Integer> window = new HashMap<>();
// 统计 t 中各字符出现次数
for (char c : t.toCharArray())
need.put(c, need.getOrDefault(c, 0) + 1);
int left = 0, right = 0;
int valid = 0; // 窗口中满足需要的字符个数
// 记录最小覆盖子串的起始索引及长度
int start = 0, len = Integer.MAX_VALUE;
while (right < s.length()) {
// c 是将移入窗口的字符
char c = s.charAt(right);
// 扩大窗口
right++;
// 进行窗口内数据的一系列更新
if (need.containsKey(c)) {
window.put(c, window.getOrDefault(c, 0) + 1);
if (window.get(c).equals(need.get(c)))
valid++; // 只有当 window[c] 和 need[c] 对应的出现次数一致时,才能满足条件,valid 才能 +1
}
// 判断左侧窗口是否要收缩
while (valid == need.size()) {
// 更新最小覆盖子串
if (right - left < len) {
start = left;
len = right - left;
}
// d 是将移出窗口的字符
char d = s.charAt(left);
// 缩小窗口
left++;
// 进行窗口内数据的一系列更新
if (need.containsKey(d)) {
if (window.get(d).equals(need.get(d)))
valid--; // 只有当 window[d] 内的出现次数和 need[d] 相等时,才能 -1
window.put(d, window.get(d) - 1);
}
}
}
// 返回最小覆盖子串
return len == Integer.MAX_VALUE ?
"" : s.substring(start, start + len);
}
Warning
使用 Java 的读者要尤其警惕语言特性的陷阱。Java 的 Integer,String 等类型判定相等应该用
equals
方法而不能直接用等号 `==,这是 Java 包装类的一个隐晦细节。所以在缩小窗口更新数据的时候,不能直接改写为
window.get(d) == need.get(d),而要用
window.get(d).equals(need.get(d)) `,之后的题目代码同理。
需要注意的是,当我们发现某个字符在 window
的数量满足了 need
的需要,就要更新 valid
,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。
当 valid == need.size()
时,说明 T
中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。
移动 left
收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。
至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿。
最好看看作者的可视化算法,一步步跟着来
先看懂上面图片演示的大概原理,再看看作者的可视化演示