有了搜索左右边界的二分搜索,你可以去解决力扣第 34 题「 在排序数组中查找元素的第一个和最后一个位置 」。接下来梳理一下这些细节差异的因果逻辑:

第一个,最基本的二分查找算法

因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1

因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回

第二个,寻找左侧边界的二分查找

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧右侧边界以锁定左侧边界

第三个,寻找右侧边界的二分查找

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧左侧边界以锁定右侧边界

又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一

对于寻找左右边界的二分搜索,比较常见的手法是使用左闭右开的「搜索区间」,我们还根据逻辑将「搜索区间」全都统一成了两端都闭,便于记忆,只要修改两处即可变化出三种写法

int binary_search(int[] nums, int target) {
    int left = 0, right = nums.length - 1; 
    while(left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1; 
        } else if(nums[mid] == target) {
            // 直接返回
            return mid;
        }
    }
    // 直接返回
    return -1;
}
 
int left_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 别返回,锁定左侧边界
            right = mid - 1;
        }
    }
    // 判断 target 是否存在于 nums 中
    if (left < 0 || left >= nums.length) {
        return -1;
    }
    // 判断一下 nums[left] 是不是 target
    return nums[left] == target ? left : -1;
}
 
int right_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 别返回,锁定右侧边界
            left = mid + 1;
        }
    }
    // 判断 target 是否存在于 nums 中
    // if (left - 1 < 0 || left - 1 >= nums.length) {
    //     return -1;
    // }
    
    // 由于 while 的结束条件是 right == left - 1,且现在在求右边界
    // 所以用 right 替代 left - 1 更好记
    if (right < 0 || right >= nums.length) {
        return -1;
    }
    return nums[right] == target ? right : -1;
}

如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。通过本文,你学会了:

1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。

2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。

3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在 nums[mid] == target 时做修改即可,搜索右侧时需要减一。

4、如果将「搜索区间」全都统一成两端都闭,好记,只要稍改 nums[mid] == target 条件处的代码和返回的逻辑即可,推荐拿小本本记下,作为二分搜索模板。

最后我想说,以上二分搜索的框架属于「术」的范畴,如果上升到「道」的层面,二分思维的精髓就是:通过已知信息尽可能多地收缩(折半)搜索空间,从而增加穷举效率,快速找到目标。