一、问题分析

看一下力扣第 416 题「分割等和子集」:

输入一个只包含正整数的非空数组 nums,请你写一个算法,判断这个数组是否可以被分割成两个子集,使得两个子集的元素和相等。

算法的函数签名如下:

// 输入一个集合,返回是否能够分割成和相等的两个子集
boolean canPartition(int[] nums);

比如说输入 nums = [1,5,11,5],算法返回 true,因为 nums 可以分割成 [1,5,5] 和 [11] 这两个子集。

如果说输入 nums = [1,3,2,5],算法返回 false,因为 nums 无论如何都不能分割成两个和相等的子集。

对于这个问题,看起来和背包没有任何关系,为什么说它是背包问题呢?

首先回忆一下背包问题大致的描述是什么:

给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i],价值为 val[i],现在让你用这个背包装物品,最多能装的价值是多少?

那么对于这个问题,我们可以先对集合求和,得出 sum,把问题转化为背包问题:

给一个可装载重量为 sum / 2 的背包和 N 个物品,每个物品的重量为 nums[i]。现在让你装物品,是否存在一种装法,能够恰好将背包装满

你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。

二、解法分析

第一步要明确两点,「状态」和「选择」

这个前文 1. 0-1背包问题 已经详细解释过了,状态就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」。

第二步要明确 dp 数组的定义

按照背包问题的套路,可以给出如下定义:

dp[i][j] = x 表示,对于前 i 个物品(i 从 1 开始计数),当前背包的容量为 j 时,若 x 为 true,则说明可以恰好将背包装满,若 x 为 false,则说明不能恰好将背包装满

比如说,如果 dp[4][9] = true,其含义为:对于容量为 9 的背包,若只是在前 4 个物品中进行选择,可以有一种方法把背包恰好装满。

或者说对于本题,含义是对于给定的集合中,若只在前 4 个数字中进行选择,存在一个子集的和可以恰好凑出 9。

根据这个定义,我们想求的最终答案就是 dp[N][sum/2],base case 就是 dp[..][0] = true 和 dp[0][..] = false,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。

第三步,根据「选择」,思考状态转移的逻辑

回想刚才的 dp 数组含义,可以根据「选择」对 dp[i][j] 得到以下状态转移:

如果不把 nums[i] 算入子集,或者说你不把这第 i 个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态 dp[i-1][j],继承之前的结果。

如果把 nums[i] 算入子集,或者说你把这第 i 个物品装入了背包,那么是否能够恰好装满背包,取决于状态 dp[i-1][j-nums[i-1]]

Info

由于 dp 数组定义中的 i 是从 1 开始计数,而数组索引是从 0 开始的,所以第 i 个物品的重量应该是 nums[i-1],这一点不要搞混。

dp[i - 1][j-nums[i-1]] 也很好理解:你如果装了第 i 个物品,就要看背包的剩余重量 j - nums[i-1] 限制下是否能够被恰好装满。

换句话说,如果 j - nums[i-1] 的重量可以被恰好装满,那么只要把第 i 个物品装进去,也可恰好装满 j 的重量;否则的话,重量 j 肯定是装不满的。

最后一步,把伪码翻译成代码,处理一些边界情况

以下是我的 Java 代码,完全翻译了之前的思路,并处理了一些边界情况:

boolean canPartition(int[] nums) {
    int sum = 0;
    for (int num : nums) sum += num;
    // 和为奇数时,不可能划分成两个和相等的集合
    if (sum % 2 != 0) return false;
    int n = nums.length;
    sum = sum / 2;
    boolean[][] dp = new boolean[n + 1][sum + 1];
    // base case
    for (int i = 0; i <= n; i++)
        dp[i][0] = true;
 
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= sum; j++) {
            if (j - nums[i - 1] < 0) {
                // 背包容量不足,不能装入第 i 个物品
                dp[i][j] = dp[i - 1][j];
            } else {
                // 装入或不装入背包
                dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];
            }
        }
    }
    return dp[n][sum];
}

三、进一步优化

再进一步,是否可以优化这个代码呢?注意到 dp[i][j] 都是通过上一行 dp[i-1][..] 转移过来的,之前的数据都不会再使用了。

所以,我们可以参照前文 对动态规划进行降维打击,将二维 dp 数组压缩为一维,节约空间复杂度:

boolean canPartition(int[] nums) {
    int sum = 0;
    for (int num : nums) sum += num;
    // 和为奇数时,不可能划分成两个和相等的集合
    if (sum % 2 != 0) return false;
    int n = nums.length;
    sum = sum / 2;
    boolean[] dp = new boolean[sum + 1];
    
    // base case
    dp[0] = true;
 
    for (int i = 0; i < n; i++) {
        for (int j = sum; j >= 0; j--) {
            if (j - nums[i] >= 0) {
                dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
    }
    return dp[sum];
}

其实这段代码和之前的解法思路完全相同,只在一行 dp 数组上操作,i 每进行一轮迭代,dp[j] 其实就相当于 dp[i-1][j],所以只需要一维数组就够用了。

唯一需要注意的是 j 应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果

至此,子集切割的问题就完全解决了,时间复杂度 O(n\*sum),空间复杂度 O(sum)