我相信读者做动态规问题时,肯定会对 dp 数组的遍历顺序有些头疼。我们拿二维 dp 数组来举例,有时候我们是正向遍历:

int[][] dp = new int[m][n];
for (int i = 0; i < m; i++)
    for (int j = 0; j < n; j++)
        // 计算 dp[i][j]

有时候我们反向遍历:

for (int i = m - 1; i >= 0; i--)
    for (int j = n - 1; j >= 0; j--)
        // 计算 dp[i][j]

有时候可能会斜向遍历:

// 斜着遍历数组
for (int l = 2; l <= n; l++) {
    for (int i = 0; i <= n - l; i++) {
        int j = l + i - 1;
        // 计算 dp[i][j]
    }
}

甚至更让人迷惑的是,有时候发现正向反向遍历都可以得到正确答案,比如我们在 团灭股票问题 中有的地方就正反皆可。

如果仔细观察的话可以发现其中的原因,你只要把住两点就行了:

1、遍历的过程中,所需的状态必须是已经计算出来的

2、遍历结束后,存储结果的那个位置必须已经被计算出来

下面来具体解释上面两个原则是什么意思。

比如编辑距离这个经典的问题,详解见后文 编辑距离详解,我们通过对 dp 数组的定义,确定了 base case 是 dp[..][0] 和 dp[0][..],最终答案是 dp[m][n];而且我们通过状态转移方程知道 dp[i][j] 需要从 dp[i-1][j]dp[i][j-1]dp[i-1][j-1] 转移而来,如下图:

image.png

那么,参考刚才说的两条原则,你该怎么遍历 dp 数组?肯定是正向遍历:

for (int i = 1; i < m; i++)
    for (int j = 1; j < n; j++)
        // 通过 dp[i-1][j], dp[i][j - 1], dp[i-1][j-1]
        // 计算 dp[i][j]

因为,这样每一步迭代的左边、上边、左上边的位置都是 base case 或者之前计算过的,而且最终结束在我们想要的答案 dp[m][n]

再举一例,回文子序列问题,详见后文 子序列问题模板,我们通过过对 dp 数组的定义,确定了 base case 处在中间的对角线,dp[i][j] 需要从 dp[i+1][j]dp[i][j-1]dp[i+1][j-1] 转移而来,想要求的最终答案是 dp[0][n-1],如下图:

image.png

这种情况根据刚才的两个原则,就可以有两种正确的遍历方式:

image.png

要么从左至右斜着遍历,要么从下向上从左到右遍历,这样才能保证每次 dp[i][j] 的左边、下边、左下边已经计算完毕,得到正确结果。

现在,你应该理解了这两个原则,主要就是看 base case 和最终结果的存储位置,保证遍历过程中使用的数据都是计算完毕的就行,有时候确实存在多种方法可以得到正确答案,可根据个人口味自行选择。