本文聊的是力扣第 518 题「 零钱兑换 II 」,我描述一下题目:
给定不同面额的硬币 coins
和一个总金额 amount
,写一个函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
我们要完成的函数的签名如下:
比如说输入 amount = 5, coins = [1,2,5]
,算法应该返回 4,因为有如下 4 种方式可以凑出目标金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
如果输入的 amount = 5, coins = [3]
,算法应该返回 0,因为用面额为 3 的硬币无法凑出总金额 5。
Tip
至于零钱兑换 I,在我们前文 动态规划解题套路框架 写过。
我们可以把这个问题转化为背包问题的描述形式:
有一个背包,最大容量为 amount
,有一系列物品 coins
,每个物品的重量为 coins[i]
,每个物品的数量无限。请问有多少种方法,能够把背包恰好装满?
这个问题和我们前面讲过的两个背包问题,有一个最大的区别就是,每个物品的数量是无限的,这也就是传说中的「完全背包问题」,没啥高大上的,无非就是状态转移方程有一点变化而已。
下面就以背包问题的描述形式,继续按照流程来分析。
解题思路
第一步要明确两点,「状态」和「选择」。
状态有两个,就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」嘛,背包问题的套路都是这样。
明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:
第二步要明确 dp
数组的定义。
首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维 dp
数组。
dp[i][j]
的定义如下:
若只使用前 i
个物品(可以重复使用),当背包容量为 j
时,有 dp[i][j]
种方法可以装满背包。
换句话说,翻译回我们题目的意思就是:
若只使用 coins
中的前 i
个(i
从 1 开始计数)硬币的面值,若想凑出金额 j
,有 dp[i][j]
种凑法。
经过以上的定义,可以得到:
base case 为 dp[0][..] = 0, dp[..][0] = 1
。i = 0
代表不使用任何硬币面值,这种情况下显然无法凑出任何金额;j = 0
代表需要凑出的目标金额为 0,那么什么都不做就是唯一的一种凑法。
我们最终想得到的答案就是 dp[N][amount]
,其中 N
为 coins
数组的大小。
大致的伪码思路如下:
第三步,根据「选择」,思考状态转移的逻辑。
注意,我们这个问题的特殊点在于物品的数量是无限的,所以这里和之前写的 1. 0-1背包问题 文章有所不同。
如果你不把这第 i
个物品装入背包,也就是说你不使用 coins[i-1]
这个面值的硬币,那么凑出面额 j
的方法数 dp[i][j]
应该等于 dp[i-1][j]
,继承之前的结果。
如果你把这第 i
个物品装入了背包,也就是说你使用 coins[i-1]
这个面值的硬币,那么 dp[i][j]
应该等于 dp[i][j-coins[i-1]]
。
Note
由于定义中的
i
是从 1 开始计数的,所以coins
的索引是i-1
时表示第i
个硬币的面值。
dp[i][j-coins[i-1]]
也不难理解,如果你决定使用这个面值的硬币,那么就应该关注如何凑出金额 j - coins[i-1]
。
比如说,你想用面值为 2 的硬币凑出金额 5,那么如果你知道了凑出金额 3 的方法,再加上一枚面额为 2 的硬币,不就可以凑出 5 了嘛。
综上就是两种选择,而我们想求的 dp[i][j]
是「共有多少种凑法」,所以 dp[i][j]
的值应该是以上两种选择的结果之和:
Note
有的读者在这里可能会有疑问,不是说可以重复使用硬币吗?那么如果我确定「使用第
i
个面值的硬币」,我怎么确定这个面值的硬币被使用了多少枚?简单的一个dp[i][j-coins[i-1]]
可以包含重复使用第i
个硬币的情况吗?
对于这个问题,建议你再仔回头细阅读一下我们对 dp
数组的定义,然后把这个定义代入 dp[i][j-coins[i-1]]
看看:
若只使用前 i
个物品(可以重复使用),当背包容量为 j-coins[i-1]
时,有 dp[i][j-coins[i-1]]
种方法可以装满背包。
看到了吗,dp[i][j-coins[i-1]]
也是允许你使用第 i
个硬币的,所以说已经包含了重复使用硬币的情况,你一百个放心。
最后一步,把伪码翻译成代码,处理一些边界情况。
我用 Java 写的代码,把上面的思路完全翻译了一遍,并且处理了一些边界问题:
而且,我们通过观察可以发现,dp
数组的转移只和 dp[i][..]
和 dp[i-1][..]
有关,所以可以使用前文讲的 动态规划空间压缩技巧,进一步降低算法的空间复杂度:
这个解法和之前的思路完全相同,将二维 dp
数组压缩为一维,时间复杂度 O(N*amount),空间复杂度 O(amount)。
至此,这道零钱兑换问题也通过背包问题的框架解决了。