0. 引言

随着 redis 的普及,更多的同学对 redis 分布式缓存更加熟悉,但在一些实际场景中,其实并不需要用到 redis,使用更加简单的本地缓存即可实现我们的缓存需求。

今天,我们一起来看看本地缓存组件 ehcache

1. ehcache 简介

1.1 简介

ehcache 是基于 java 开发的本地缓存组件,无需单独安装部署,只要引入 jar 包就可利用它来实现缓存。

所谓本地缓存,就是指存储在 JVM 堆内存中的临时缓存数据,当然 ehcache 本身也支持Off-Heap Store机制来使用堆外内存,本地缓存相较于 redis 性能和响应速度更高。

Ehcache 的本地缓存还支持过期时间、最大容量、持久化等特性,使得它可以适用于各种不同的缓存场景。

官方文档地址:www.ehcache.org/documentati…

1.2 本地缓存与 redis 的区别

本地缓存与 redis 的区别在于:

  • 架构:

    本地缓存基于单机架构,即数据仅本机可用,无法共享给其他服务。除非使用服务调用来获取。而 redis 本身基于分布式架构,支持跨服务调取。 所以当数据需要分布式调用时,则适用于 redis,如果数据只需要本地获取,则可考虑本地缓存

  • 性能:

    本地缓存本身基于本机内存,没有网络 IO 消耗,所以性能上大大高于 redis,但是如果数据量较大,则还是要考虑使用 redis,本地缓存仅适用于数据量小、结构简单的数据场景,不适合复杂的业务数据

  • 功能拓展:

    redis 支持持久化、订阅模式、集群、主从模式等,而 ehcache 更倾向于简单的缓存功能场景,虽然也支持持久化,但是本身并不建议用它来做大型或复杂场景的缓存。如果场景比较简单轻量,对延迟有较高要求,则可选择本地缓存

2. ehcache 使用

1、创建一个 springboot 项目,这里我的 springboot 版本为2.6.13

2、引入 ehcahe 组件依赖

这里需要注意的是net.sf.ehcache是 ehcache2.X 与 org.ehcache是 echcache3.X,两个版本配置有区别

        <dependency>
            <groupId>net.sf.ehcache</groupId>
            <artifactId>ehcache</artifactId>
            <version>2.10.9.2</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
            <version>2.6.13</version>
        </dependency>
 
 

3、在启动类上添加@EnableCaching注解,开启缓存

@SpringBootApplication
@EnableCaching
public class LocalCacheDemoApplication {
 
    public static void main(String[] args) {
        SpringApplication.run(LocalCacheDemoApplication.class, args);
    }
 
}
 
 

4、在配置文件application.yml中添加配置

spring:
  profiles: 
  	active: dev
  cache:
    type: ehcache
    ehcache:
      config: classpath:ehcache.xml
 
 

5、在 resources 文件夹下创建配置文件ehcache.xml,注意这里单独创建了一个 name 为 user 的缓存,用于后续保存用户信息缓存。如果有不同的缓存需要使用不同的 name 的,需要单独创建 cache 标签

标签介绍:

defaultCache: 默认缓存配置标签 cache 指定缓存标签,name 表示缓存名称 diskStore 数据存储磁盘路径

属性介绍:

eternal: 缓存是否永久有效,如果为 true 则忽略 timeToIdleSeconds 和 timeToLiveSeconds

maxElementsInMemory:最多缓存多少个 key

overflowToDisk: 缓存超限时是否写入磁盘,默认为 true

overflowToOffHeap: 堆内存超限时是否使用堆外内存,企业版功能,收费

diskPersistent:缓存是否持久化 timeToLiveSeconds:缓存多久过期

timeToIdleSeconds:缓存多久没有被访问就过期

diskExpiryThreadIntervalSeconds:磁盘缓存过期检查线程运行时间间隔

memoryStoreEvictionPolicy:缓存淘汰策略, LFU: 最近最少使用的元素先移出; FIFO: 最先进入的元素被移出; LRU: 使用越少的元素被移出

maxBytesLocalHeap:缓存最大占用 JVM 堆内存,0 表示不限制,单位支持 K、M 或 G

maxBytesLocalOffHeap: 缓存最大占用堆外内存,0 表示不限制,单位支持 K、M 或 G,企业版功能,收费

maxBytesLocalDisk:缓存最大占用磁盘,0 表示不限制,单位支持 K、M 或 G

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:noNamespaceSchemaLocation="http://ehcache.org/ehcache.xsd"
         updateCheck="false">
         
    <defaultCache
            eternal="false"
            maxElementsInMemory="10000"
            overflowToDisk="false"
            diskPersistent="false"
            timeToLiveSeconds="3600"
            timeToIdleSeconds="0"
            diskExpiryThreadIntervalSeconds="120"
            memoryStoreEvictionPolicy="LRU"/>
 
    <cache
            name="user"
            eternal="false"
            maxElementsInMemory="10000"
            overflowToDisk="false"
            diskPersistent="false"
            timeToLiveSeconds="3600"
            timeToIdleSeconds="0"
            diskExpiryThreadIntervalSeconds="120"
            memoryStoreEvictionPolicy="LRU"/>
 
<!--    存储到磁盘时的路径-->
    <diskStore path="/Users/wuhanxue/Downloads/ehcache" />
 
</ehcache>
 
 

6、缓存使用,在获取方法中使用@Cacheable注解,在更新方法中使用@CachePut注解。 我这里模拟就没有访问数据库查询数据了,大家在实际书写的时候可以连接上数据源测试

@RestController
@RequestMapping("user")
public class UserController {
 
    @GetMapping("get")
    @Cacheable(cacheNames = "user", key = "#id")
    public User getById(Integer id) {
        System.out.println("get第一次获取,不走缓存");
        User user = new User();
        user.setId(id);
        user.setAge(18);
        user.setName("benjamin_"+id);
        user.setSex(true);
        return user;
    }
 
    @PostMapping("update")
    @CachePut(cacheNames = "user", key = "#search.id")
    public User update(@RequestBody User search) {
        System.out.println("update更新缓存");
        User user = new User();
        Integer id = search.getId();
        user.setId(id);
        user.setAge(search.getAge() != null ? search.getAge()+1 : 0);
        user.setName("update_benjamin_"+id);
        user.setSex(true);
        return user;
    }
 
}
 
 

3. 测试

1、调用查询接口:localhost:8080/user/get?id=1

2、第一次调用,打印 “get 第一次获取,不走缓存”。再调用一次发现没有打印了,但是数据正常查询,说明走了缓存

3、调用更新接口

4、再调用查询接口,查询到的就是更新的数据,说明缓存更新成功

4. 注意事项

谨慎使用 maxElementsInMemory

maxElementsInMemory 表示的是最大缓存多少个 key,这个配置项谨慎使用,一般我们应该根据占用多少内存空间来控制,而不是占用多少个 key,如果出现某些 key 的数据量特别大时,就会导致 key 数量没超过,但内存占用超过导致的 OOM 了

这个我们通过一个生成大数据量的接口来模拟,其中generateMemoryString方法可以在文末的源码仓库中

1、书写接口

@GetMapping("build")
    @Cacheable(cacheNames = "user", key = "#id")
    public User build(Integer id) {
        System.out.println("get第一次获取,不走缓存");
        User user = new User();
        user.setId(id);
        user.setAge(18);
        // 生成指定大小的字符串
        user.setName(generateMemoryString(id));
        user.setSex(true);
        return user;
    }
 
 

2、限制项目 JVM 内存为 100m,方便更快模拟出报错

3、调用接口localhost:8080/user/build?id=100,因为该接口会生成大数据,占用本地缓存,而 JVM 缓存又给的 100M,所以调用会报错堆内存溢出,如图所示

4、因此该配置项要谨慎使用,可以通过maxBytesLocalHeap,maxBytesLocalDisk设置占用多少内存、磁盘来替代

<cache
            name="user"
            eternal="false"
            maxBytesLocalHeap="50M"
            maxBytesLocalDisk="200M"
            overflowToDisk="false"
            diskPersistent="false"
            timeToLiveSeconds="3600"
            timeToIdleSeconds="0"
            diskExpiryThreadIntervalSeconds="120"
            memoryStoreEvictionPolicy="LRU"
    />
 
 

如果maxBytesLocalHeapmaxElementsInMemory都配置了的,谁先达到配置的值,就触发

如果单个 key 值太大,仍然会导致 OOM

虽然我们上面配置了maxBytesLocalHeap来限制最大使用的内存,比如我们限制了该值为 100M,则如果我们有 4 个 30M 的数据进来,那么就会根据配置的淘汰策略去淘汰之前的 key,以腾出空间来装新的数据

但如果新进来的数据很大,比如超过 100M 了,那么就会一下子装满内存,甚至淘汰之前的 key 也不行,所以这种情况下还是会导致 OOM 的

遇到这种情况,两种处理办法,一种是保证不会有大于这个阈值的数据产生,这个可以通过业务代码控制,二是设置一个全局错误捕捉,捕捉产生的 OOM 报错,然后返回一个兜底或者其他的状态码,以此标识

演示源码

gitee.com/wuhanxue/wu…